
The submission contains four raw (dd) image files of the USB flash disk «Transcend JF V10 / 1GB,
D33193»,  two  packet  capture  (pcap)  files  and  four  log  files.  The  disk  is  non-partitioned  and
contains  no  file  systems;  it  contains  many  non-deterministic  sectors  (each  sector  contains  512
bytes).

Namely, each sector that doesn't belong to a written block of flash memory cells contains non-
deterministic data (instead of null bytes, as many forensic examiners tend to expect). The disk does
function  properly  though.  Several  tests  show  that  writing  to  a  sector  turns  its  contents  to
deterministic state (i.e. you will read exactly what you wrote).

Days were spent to understand why there are non-deterministic blocks of data. The study showed
that each non-deterministic sector represents the contents of the SCSI READ(10) command related
to reading that sector. In other words, when the disk receives SCSI READ command that covers
non-written sectors it simply sends the contents of the command back to the host, and these contents
appear as sector data to an operating system.

In the experiment two raw images of the USB flash disk were acquired on a Linux host using dc3dd
(these image files together with corresponding dc3dd log files can be found in «linux-dc3dd/»), and
two other raw images were acquired on a Windows 7 host using FTK Imager (image files and log
files are located in «windows7-ftkimager/»); all images have different hash values. Windows host
was also running capture software to intercept all USB commands and replies, this data was written
to pcap files named «usb-1» and «usb-2» (for the first and the second acquisition accordingly).
There  were  no  writes  to  the  disk  during  or  between  acquisitions.  The  disk  was  disconnected
between acquisitions on a Windows host: this was done to assign a new tag to the command blocks
of all SCSI READ(10) commands going to the disk (unlike Linux, Windows uses the same tag in
the command block of all SCSI READ(10) commands, the tag seems to be generated randomly
when a disk is connected via USB; Linux, conversely, assigns new tag to every command block of
SCSI READ(10) command); otherwise, two images would have the same hash value on a Windows
host (results of hashing the disk twice without reconnecting it are shown on the screenshot located
at «windows7-ftkimager/ftk-imager-screenshot.png»).

Let's look at the sector #100005 in four images acquired (dd options: skip=100004 count=1).

«linux-dc3dd/flash-firstrun.dd» has the following data:
00000000  55 53 42 43 94 06 00 00  00 80 00 00 80 00 0a 28  |USBC...........(| 
00000010  00 00 01 86 80 00 00 40  00 00 00 00 00 00 00 60  |.......@.......`| 
00000020  00 60 ff ff ff ff ff ff  ff ff ff ff ff ff ff ff  |.`..............| 
00000030  ff ff ff ff ff ff ff ff  ff ff ff ff ff ff ff ff  |................| 
* 
00000200

«linux-dc3dd/flash-secondrun.dd» has the following data:
00000000  55 53 42 43 00 7f 00 00  00 80 00 00 80 00 0a 28  |USBC...........(| 
00000010  00 00 01 86 80 00 00 40  00 00 00 00 00 00 00 44  |.......@.......D| 
00000020  00 44 ff ff ff ff ff ff  ff ff ff ff ff ff ff ff  |.D..............| 
00000030  ff ff ff ff ff ff ff ff  ff ff ff ff ff ff ff ff  |................| 
* 
00000200

«windows7-ftkimager/flash-firstrun.001» has the following data:
00000000  55 53 42 43 d8 b1 6b 91  00 40 00 00 80 00 0a 28  |USBC..k..@.....(| 
00000010  00 00 01 86 a0 00 00 20  00 00 00 00 00 00 00 5a  |....... .......Z| 
00000020  00 5a ff ff ff ff ff ff  ff ff ff ff ff ff ff ff  |.Z..............| 
00000030  ff ff ff ff ff ff ff ff  ff ff ff ff ff ff ff ff  |................| 



* 
00000200 

«windows7-ftkimager/flash-secondrun.001» has the following data:
00000000  55 53 42 43 20 6a 7f 83  00 40 00 00 80 00 0a 28  |USBC j...@.....(| 
00000010  00 00 01 86 a0 00 00 20  00 00 00 00 00 00 00 79  |....... .......y| 
00000020  00 79 ff ff ff ff ff ff  ff ff ff ff ff ff ff ff  |.y..............| 
00000030  ff ff ff ff ff ff ff ff  ff ff ff ff ff ff ff ff  |................| 
* 
00000200 

As you can see, sectors are slightly different. Now let's dissect the data in the first hexadecimal
dump (using various colors to highlight the bytes):

00000000  55 53 42 43 94 06 00 00  00 80 00 00 80 00 0a 28  |USBC...........(| 
00000010  00 00 01 86 80 00 00 40  00 00 00 00 00 00 00 60  |.......@.......`| 
00000020  00 60 ff ff ff ff ff ff  ff ff ff ff ff ff ff ff  |.`..............| 
00000030  ff ff ff ff ff ff ff ff  ff ff ff ff ff ff ff ff  |................| 
* 
00000200

Letters  «USBC»  point  us  to  the  USB  command  block,  which  starts  with  four-byte  signature
«USBC». The structure of the USB command block is presented below (taken from Linux kernel
source code):

struct bulk_cb_wrap { 
        __le32  Signature;              /* contains 'USBC' */ 
        __u32   Tag;                    /* unique per command id */ 
        __le32  DataTransferLength;     /* size of data */ 
        __u8    Flags;                  /* direction in bit 0 */ 
        __u8    Lun;                    /* LUN normally 0 */ 
        __u8    Length;                 /* of of the CDB */ 
        __u8    CDB[16];                /* max command */ 
};

The CDB field contains an actual command transmitted. The first byte of the CDB field is 0x28,
which refers us to the SCSI READ(10) command, which operational code is 0x28 (see Table 85 in
the  «SCSI  Commands  Reference  Manual»  by  Seagate:
www.seagate.com/staticfiles/support/disc/manuals/scsi/100293068a.pdf).  SCSI  READ(10)
command is exactly ten bytes in length (not counting previous USB command block header).

struct read_10 {
        __u8 opCode; /* operational code (28h) */ 
        __u8 Flags; /* various flags */ 
        __u32 LBA; /* logical block address (MSB first) */ 
        __u8 Group; /* group number */ 
        __u16 TransferLength; /* transfer length (MSB first) */ 
        __u8 Control; /* control byte */
};

The contents of SCSI READ(10) command are: logical block address is 18680 in hexadecimal, or
99968 in decimal; transfer length is 40 logical blocks in hexadecimal, or 64 in decimal. Note that
we were analyzing sector #100005, which is between 99968 and 100032 (99968+64). Now let's
check what data is present in the sectors #99967 till #100032 (one-liner for bash: «for i in `seq
99967 100032`; do echo -n "$i: "; dd if=flash-firstrun.dd skip=$i count=1 2> /dev/null | md5sum;
done»): sectors #99968 till #100031 have the same data as sector #99968; sector #99967 differs

http://www.seagate.com/staticfiles/support/disc/manuals/scsi/100293068a.pdf


from them, as well as sector #100032. The conclusion is that sectors #99968 till #100031 have non-
deterministic data, which represents the contents of the SCSI READ(10) command used to read that
sector range.

A program was written to study all non-deterministic sectors the same way as described above, and
the  results  are  the  same  —  every  non-deterministic  sector  contains  a  corresponding  SCSI
READ(10) command.

Related links
1. http://www.forensicfocus.com/index.php?name=Content&pid=366 (Flash  drives  and

acquisition by Dominik Weber)
2. http://www.forensicfocus.com/index.php?name=Forums&file=viewtopic&t=4707 (FAT32

strangeness by «Fab4»)

http://www.forensicfocus.com/index.php?name=Forums&file=viewtopic&t=4707
http://www.forensicfocus.com/index.php?name=Content&pid=366

